An eight-billion-year-old burst of energy has been discovered, demonstrating that we can detect and measure matter between galaxies. The discovery opens a path to using fast radio bursts to explore the expansion of the Universe and ultimately even ‘weigh’ the Universe.
But it will require even more powerful telescopes.
In a paper published today in Science, a global team led by Macquarie University’s Dr Stuart Ryder and Swinburne University of Technology’s Associate Professor Ryan Shannon, report on their discovery of the most ancient and distant fast radio burst located to date, about eight billion years old.
The discovery smashes the team’s previous record by 50 per cent. It confirms that fast radio bursts (FRBs) can be used to measure the “missing” matter between galaxies.
The source of the burst was shown to be a group of two or three galaxies that are merging, supporting current theories on the cause of fast radio bursts. The team also showed that eight billion years is about as far back as we can expect to see and pinpoint fast radio bursts with current telescopes.
On 10 June 2022, CSIRO’s ASKAP radio telescope on Wajarri Yamaji Country was used to detect a fast radio burst, created in a cosmic event that released, in milliseconds, the equivalent of our Sun’s total emission over 30 years.
“Using ASKAP’s array of dishes, we were able to determine precisely where the burst came from,” says Dr Ryder, the first author on the paper. “Then we used the European Southern Observatory (ESO) Very Large Telescope (VLT) in Chile to search for the source galaxy, finding it to be older and further away than any other FRB source found to date, and likely within a small group of merging galaxies.”
Named FRB 20220610A, the fast radio burst has reaffirmed the concept of weighing the Universe using data from FRBs. This was first demonstrated by the late Australian astronomer Jean-Pierre ‘J-P’ Macquart in a paper in Nature in 2020.
“J-P showed that the further away a fast radio burst is, the more diffuse gas it reveals between the galaxies,” says Dr Ryder. “This is now known as the Macquart relation. Some recent fast radio bursts appeared to break this relationship. Our measurements confirm the Macquart relation holds out to beyond half the known Universe.”
About 50 FRBs have been pinpointed to date – nearly half using ASKAP. The authors suggest we should be able to detect thousands of them across the sky, and at even greater distances.
“While we still don’t know what causes these massive bursts of energy, the paper confirms that fast radio bursts are common events in the cosmos and that we will be able to use them to detect matter between galaxies, and better understand the structure of the Universe,” says Associate Professor Shannon.
And we will soon have the tools to do so. ASKAP is currently the best radio telescope to detect and locate FRBs. The international SKA telescopes now under construction in Western Australia and South Africa will be even better at allowing astronomers to locate even older and more distant FRBs. The nearly 40-metre mirror of ESO’s Extremely Large Telescope, currently under construction in the high, dry Chilean desert will then be needed to study their source galaxies.
The project was a world-wide effort with researchers from ASTRON (Netherlands), Pontificia Universidad Católica de Valparaíso (Chile), Kavli Institute for the Physics and Mathematics of the Universe (Japan), SKA Observatory (UK), Northwestern University, UC Berkeley, and UC Santa Cruz (USA).
Australian participants were Macquarie University, Swinburne University of Technology, CSIRO, ICRAR/Curtin University, ASTRO 3D, and University of Sydney.
Current methods of estimating the mass of the Universe are giving conflicting answers and challenging the standard model of cosmology.
“If we count up the amount of normal matter in the Universe – the atoms that we are all made of – we find that more than half of what should be there today is missing,” says Associate Professor Shannon.
“We think that the missing matter is hiding in the space between galaxies, but it may just be so hot and diffuse that it’s impossible to see using normal techniques.
“Fast radio bursts sense this ionised material. Even in space that is nearly perfectly empty they can ‘see’ all the electrons, and that allows us to measure how much stuff is between the galaxies.”
CSIRO’s ASKAP radio telescope is situated at Inyarrimanha Ilgari Bundara, the CSIRO Murchison Radio-astronomy Observatory in Western Australia, about 800 kilometres north of Perth.
Currently, 16 countries are partners in the SKA Observatory, which is building two radio telescopes. SKA-Low (the low frequency telescope) – at the same site as ASKAP – will comprise 131,072 two-metre-tall antennas, while SKA-Mid (the mid frequency telescope) in South Africa will comprise 197 dishes.
The Very Large Telescope (VLT) has four eight-metre mirrors and is operated by the European Southern Observatory, located on Cerro Paranal in the Atacama Desert of northern Chile. Australia is a strategic partner of ESO, giving Australian astronomers access to the VLT and the opportunity to contribute new technologies to it.
Australian astronomers are also hoping to gain access to ESO’s Extremely Large Telescope when it starts operation later this decade. The ELT will be able to deliver images 15 times sharper than the Hubble Space Telescope.
Contacts
For embargoed access to media kit and for interviews contact
Fran Molloy, +61 412 485 677, fran.molloy@mq.edu.au
Niall Byrne, +61 417 131 977, niall@scienceinpublic.com.au
A copy of this release will be available post-embargo at mq.edu.au/newsroom.
Interviews
Stuart Ryder (Macquarie University), +61 419 970834, Stuart.Ryder@mq.edu.au
Ryan Shannon (Swinburne University), +61 3 9214 5205, rshannon@swin.edu.au.
The peer reviewed paper will be available at 10.1126/science.adf2678.
Abstract and author list
A luminous fast radio burst that probes the Universe at redshift 1
Stuart D. Ryder1,2, Keith W. Bannister3, S. Bhandari4,5, A. T. Deller6, R. D. Ekers3,7, Marcin Glowacki7, Alexa C. Gordon8, Kelly Gourdji6, C. W. James7,
Charles D. Kilpatrick8, Wenbin Lu9, Lachlan Marnoch1,2,3,10, V. A. Moss3,
J. Xavier Prochaska11,12,13, Hao Qiu14, Elaine M. Sadler15,3, Sunil Simha11, Mawson W. Sammons7, Danica R. Scott7, Nicolas Tejos16, R. M. Shannon6∗.
1 School of Mathematical and Physical Sciences, Macquarie University, NSW 2109, Australia
2 Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW 2109, Australia
3 Australia Telescope National Facility, CSIRO, Space and Astronomy, PO Box 76, Epping, NSW 1710, Australia
4 ASTRON, Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
5Joint institute for VLBI ERIC, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
6Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn,VIC 3122, Australia
7International Centre for Radio Astronomy Research, Curtin Institute of Radio Astronomy,
Curtin University, Perth, Western Australia, Australia.
8Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
9Departments of Astronomy and Theoretical Astrophysics Center, UC Berkeley, Berkeley, CA 94720, USA
10 ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia
11 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
12 Kavli Institute for the Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
13Simons Pivot Fellow
14SKA Observatory, Jodrell Bank, Lower Withington, Macclesfield, SK11 9FT, UK
15Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia
16Instituto de Fisica, Pontificia Universidad Cato ́lica de Valpara ́ıso, Casilla 4059, Valpara ́ıso, Chile
∗To whom correspondence should be addressed; E-mail: rshannon@swin.edu.au.
Fast radio bursts (FRBs) are millisecond-duration pulses of radio emission originating from extragalactic distances. Radio dispersion is imparted on each burst by intervening plasma, mostly located in the intergalactic medium. In this work, we observe the burst FRB 20220610A and localize it to a morphologically complex host galaxy system at redshift 1.016 ± 0.002. The burst redshift and dispersion measure are consistent with passage through a substantial column of plasma in the intergalactic medium and extend the relationship between those quantities measured at lower redshift. The burst shows evidence for passage through additional turbulent magnetized plasma, potentially associated with the host galaxy. We use the burst energy of 1042 erg to revise the empirical maximum energy of an FRB.
Images
A – Artist’s impression of a record-breaking fast radio burst: https://www.eso.org/~mkornmes/sci_Ryder_VLT_record.jpg
This artist’s impression (not to scale) illustrates the path of the fast radio burst FRB 20220610A, from the distant galaxy where it originated all the way to Earth, in one of the Milky Way’s spiral arms. The source galaxy of FRB 20220610A, pinned down thanks to ESO’s Very Large Telescope, appears to be located within a small group of interacting galaxies. It’s so far away its light took eight billion years to reach us, making FRB 20220610A the most distant fast radio burst found to date.
Credit: ESO/M. Kornmesser
Alt text: In this artist’s impression, three cream and pink coloured galaxies are jumbled together in the upper left corner. From this group, a bright yellow streak points towards the bottom right, where it intersects with a dot on a spiral arm of the Milky Way. The Milky Way, with a glowing white centre and blue-purple spiral arms, stands out against the black background faintly speckled with distant galaxies.
B – Artists impression of the fast radio burst and the instruments used to detect and locate it.
Credit: Carl Knox (OzGrav/Swinburne University)
Additional comments
Dr Sarah Pearce is the SKA-Low Telescope Director for the SKA Observatory (SKAO). She leads a growing team in Australia preparing for construction, commissioning and operations of the world’s largest low frequency telescope, SKA-Low, at Inyarrimanha Ilgari Bundara, CSIRO’s Murchison Radio-astronomy Observatory in WA, on Wajarri Yamaji country.
“This exciting discovery is a perfect example of how radio astronomy and optical astronomy research and facilities working collaboratively can deliver great science,” said Dr Pearce.
“When constructed, the SKAO’s telescopes in Australia and South Africa will provide an unprecedented view of the Universe in the radio spectrum and we look forward to working with our optical astronomy colleagues to continue to make discoveries that were previously not possible.”
Associate Professor Ryan Shannon, Swinburne University of Technology
“The fact that FRBs are so common is also amazing. It shows how promising the field can be, because you’re not just going to do this for 30 bursts, you can do this for 30,000 bursts, make a new map of the structure of the universe, and use it to answer big questions about cosmology,” Shannon says.
Dr Stuart Ryder, Macquarie University
“The VLT imaging and spectroscopy for the host of FRB 20220610A appears to show a system of two, or perhaps three galaxies in the course of merging or interacting and forming new stars. This by itself is not unusual among galaxies at that time, but it is consistent with the burst originating from a magnetar born in a supernova explosion, associated with this burst of star formation.”
European Southern Observatory (ESO) media release:
Astronomers detect most distant fast radio burst to date
An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This “fast radio burst” (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory’s (ESO) Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun’s total emission over 30 years.
The discovery of the burst, named FRB 20220610A, was made in June last year by the ASKAP radio telescope in Australia [1] and it smashed the team’s previous distance record by 50 percent.
“Using ASKAP’s array of dishes, we were able to determine precisely where the burst came from,” says Stuart Ryder, an astronomer from Macquarie University in Australia and the co-lead author of the study published today in Science. “Then we used [ESO’s VLT] in Chile to search for the source galaxy, [2] finding it to be older and further away than any other FRB source found to date and likely within a small group of merging galaxies.”
The discovery confirms that FRBs can be used to measure the “missing” matter between galaxies, providing a new way to “weigh” the Universe.
Current methods of estimating the mass of the Universe are giving conflicting answers and challenging the standard model of cosmology. “If we count up the amount of normal matter in the Universe — the atoms that we are all made of — we find that more than half of what should be there today is missing,” says Ryan Shannon, a professor at the Swinburne University of Technology in Australia, who also co-led the study. “We think that the missing matter is hiding in the space between galaxies, but it may just be so hot and diffuse that it’s impossible to see using normal techniques.”
“Fast radio bursts sense this ionised material. Even in space that is nearly perfectly empty they can ‘see’ all the electrons, and that allows us to measure how much stuff is between the galaxies,” Shannon says.
Finding distant FRBs is key to accurately measuring the Universe’s missing matter, as shown by the late Australian astronomer Jean-Pierre (“J-P”) Macquart in 2020. “J-P showed that the further away a fast radio burst is, the more diffuse gas it reveals between the galaxies. This is now known as the Macquart relation. Some recent fast radio bursts appeared to break this relationship. Our measurements confirm the Macquart relation holds out to beyond half the known Universe,” says Ryder.
“While we still don’t know what causes these massive bursts of energy, the paper confirms that fast radio bursts are common events in the cosmos and that we will be able to use them to detect matter between galaxies, and better understand the structure of the Universe,” says Shannon.
The result represents the limit of what is achievable with telescopes today, although astronomers will soon have the tools to detect even older and more distant bursts, pin down their source galaxies and measure the Universe’s missing matter. The international Square Kilometre Array Organisation is currently building two radio telescopes in South Africa and Australia that will be capable of finding thousands of FRBs, including very distant ones that cannot be detected with current facilities. ESO’s Extremely Large Telescope, a 39-metre telescope under construction in the Chilean Atacama Desert, will be one of the few telescopes able to study the source galaxies of bursts even further away than FRB 20220610A.
Notes
[1] The ASKAP telescope is owned and operated by CSIRO, Australia’s national science agency, on Wajarri Yamaji Country in Western Australia.
[2] The team used data obtained with the FOcal Reducer and low dispersion Spectrograph 2 (FORS2), the X-shooter and the High Acuity Wide-field K-band Imager (HAWK-I) instruments on ESO’s VLT. Data from the Keck Observatory in Hawai’i, US, was also used in the study.
More information
This research was presented in a paper titled “A luminous fast radio burst that probes the Universe at redshift 1” to appear in Science.
The team is composed of S. D. Ryder (School of Mathematical and Physical Sciences, Macquarie University, Australia [SMPS]; Astrophysics and Space Technologies Research Centre, Macquarie University, Sydney, Australia [ASTRC]), K. W. Bannister (Australia Telescope National Facility, Commonwealth Science and Industrial Research Organisation, Space and Astronomy, Australia [CSIRO]), S. Bhandari (The Netherlands Institute for Radio Astronomy, The Netherlands; Joint Institute for Very Long Baseline Interferometry in Europe, The Netherlands), A. T. Deller (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australia [CAS]), R. D. Ekers (CSIRO; International Centre for Radio Astronomy Research, Curtin Institute of Radio Astronomy, Curtin University, Australia [ICRAR]), M. Glowacki (ICRAR), A. C. Gordon (Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, USA [CIERA]), K. Gourdji (CAS), C. W. James (ICRAR), C. D. Kilpatrick (CIERA; Department of Physics and Astronomy, Northwestern University, USA), W. Lu (Department of Astronomy, University of California, Berkeley, USA; Theoretical Astrophysics Center, University of California, Berkeley, USA), L. Marnoch (SMPS; ASTRC; CSIRO; Australian Research Council Centre of Excellence for All-Sky Astrophysics in 3 Dimensions, Australia), V. A. Moss (CSIRO), J. X. Prochaska (Department of Astronomy and Astrophysics, University of California, Santa Cruz, USA [Santa Cruz]; Kavli Institute for the Physics and Mathematics of the Universe, Japan), H. Qiu (SKA Observatory, Jodrell Bank, UK), E. M. Sadler (Sydney Institute for Astronomy, School of Physics, University of Sydney, Australia; CSIRO), S. Simha (Santa Cruz), M. W. Sammons (ICRAR), D. R. Scott (ICRAR), N. Tejos (Instituto de Física, Pontificia Universidad Católica De Valparaíso, Chile) and R. M. Shannon (CAS).
The European Southern Observatory (ESO) enables scientists worldwide to discover the secrets of the Universe for the benefit of all. We design, build and operate world-class observatories on the ground — which astronomers use to tackle exciting questions and spread the fascination of astronomy — and promote international collaboration for astronomy. Established as an intergovernmental organisation in 1962, today ESO is supported by 16 Member States (Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom), along with the host state of Chile and with Australia as a Strategic Partner. ESO’s headquarters and its visitor centre and planetarium, the ESO Supernova, are located close to Munich in Germany, while the Chilean Atacama Desert, a marvellous place with unique conditions to observe the sky, hosts our telescopes. ESO operates three observing sites: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its Very Large Telescope Interferometer, as well as survey telescopes such as VISTA. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. Together with international partners, ESO operates ALMA on Chajnantor, a facility that observes the skies in the millimetre and submillimetre range. At Cerro Armazones, near Paranal, we are building “the world’s biggest eye on the sky” — ESO’s Extremely Large Telescope. From our offices in Santiago, Chile we support our operations in the country and engage with Chilean partners and society.
Links
- Research paper
- Macquarie University press release
- Photos of the VLT
- Find out more about ESO’s Extremely Large Telescope on our dedicated website and press kit
- For journalists: subscribe to receive our releases under embargo in your language
- For scientists: got a story? Pitch your research
Contacts
Stuart Ryder
Adjunct Fellow, School of Mathematical and Physical Sciences, Macquarie University
Sydney, Australia
Tel: +61 419 970834
Email: Stuart.Ryder@mq.edu.au
Ryan Shannon
Associate Professor, Swinburne University
Hawthorn, Australia
Tel: +61 3 9214 5205
Email: rshannon@swin.edu.au
Bárbara Ferreira
ESO Media Manager
Garching bei München, Germany
Tel: +49 89 3200 6670
Cell: +49 151 241 664 00
Email: press@eso.org